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On the development of the wake behind the 
trailing edge of a flat plate 
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Department of Mathematics University of Toronto, Toronto 5, Canada. 

(Received 8 February 1969 and in revised form 6 February 1970) 

A stream with constant velocity U is impulsively started at  time t = 0 past the 
trailing edge of a semi-infinite flat plate. According to boundary-layer theory, it 
is found that the flow at a distance x downstream from the trailing edge is 
unaware of the presence of the plate when x > Ut;  at time t = x/U there is then a 
discontinuity in the velocity normal to the plate. It is the neglect of diffusion 
parallel to the axis of the plate that introduces the discontinuity, and when the 
complete Navier-Stokes equations are considered for t N x / U ,  a solution is 
found that can be matched with that gained from boundary-layer arguments. 

1. Introduction 
Some time ago Stewartson (1951) considered the following problem: a semi- 

infinite flat plate is at  rest in a slightly viscous liquid when, at time t = 0, a 
uniform stream of constant velocity U is impulsively set up past the leading 
edge of the plate. This was tackled as a boundary-layer problem, so that for 
times t less than x lU,  at points a distance x downstream from the leading edge, 
the Rayleigh solution for the flow past an infinite plate represents the motion. 
At later times, however, the steady Blasius solution for the semi-infinite plate 
eventually dominates. The manner in which the motion passes from one limiting 
case to the other has been the cause of certain controversy recently. Stewartson 
himself indicated that the effect of the leading edge is passed by convection with 
velocity U along the edge of the boundary layer, arriving a distance x downstream 
when T = Utlx = 1; diffusion then transmits this effect through the boundary 
layer to the plate. Mathematically, an essential singularity is expected at  T = 1. 
No formal proof could be given, but a solution of the equations was found that did 
possess such a singularity. The analysis in this paper was generalized by Smith 
(1967) for the equivalent flow past a wedge, and a similar, tentative conclusion 
followed. 

In  a recent paper by Tokuda (1968), the results of Stewartson were disputed, 
though Stewartson & Brown (see corrigendum to Tokuda 1968) rightly observe 
that his conclusions were based on inaccurate numerical data, and that his proof 
of the existence of a series solution for the velocity is false. 

To the present author at least, the search for a solution with an essential 
singularity a t  T = 1 seems the only one likely to succeed when the equations con- 
sidered are the boundary-layer equations. The boundary-layer equations for 
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unsteady flows neglect the diffusion of vorticity parallel to the stream; they 
include only diffusion perpendicular, and convection parallel to the mainstream 
flow. Convection is governed by hyperbolic partial differential equations which 
preserve discontinuities, and diffusion by parabolic partial differential equations 
which ' smooth out ' discontinuities immediately-mathematically by the 
presence of essential singularities. The author is aware of the numerical solution 
by Hall (1968) of the boundary-layer equations for the Stewartson problem; 
a smooth joining of the two limiting cases is exhibited. Mathematically, the 
discontinuity is a consequence of solving the linearized boundary-layer equations; 
it is then found that the introduction of the non-linear terms ensures the existence 
of a smooth solution with the essential singularity. 

A factor neglected by Stewartson is the influence of diffusion acting parallel to 
the stream. The full Navier-Stokes equations would have to be considered if this 
effect were included, but the mathematics involved is very difficult and has not 
been attempted here. However, any solution would show that the knowledge of 
the leading edge is transmitted immediately throughout the flow field; here the 
only discontinuity would be at  the initial moment of time. 

In  the present work, therefore, we consider the same physical situation except 
that the uniform stream flows in the opposite direction; that is, we take the edge 
of the semi-infinite plate to be a trailing edge. With this change the mathematics 
becomes more amenable to solution and the main features of the flow are dis- 
played. After stating the problem in $2, we first consider the solution of the 
boundary-layer equations when the variation from a uniform stream is small; 
this enables us to linearize the equations. For points in the wake region, when 
0 < T = Utlx  < 1, the flow has a constant velocity U parallel to the plate. When 
r = 1, the influence of the trailing edge is first noticed with a discontinuity in the 
velocity normal to the axis of the plate. 

A discussion follows of the nature of the flow as T --f 00. and it is found that the 
approach to the limiting solution is by means of an exponential decay. When a 
precise asymptotic analysis is carried through, it is interesting to observe that it 
is the process of convection acting within the boundary layer that transmits the 
effect of the trailing edge through the wake. 

In an attempt to eliminate the singulariky at T = 1, the Navier-Stokes equa- 
tions, linearized in the same manner as the boundary-layer equations, are 
investigated in the region T E 1 as a singular perturbation problem. A solution is 
found which matches with the behaviour in the boundary-layer solution for both 
0 < 1 - 7 < 1 and 0 < T - 1 < 1. The smooth joining that was anticipated on 
physical grounds is therefore proved. When the complete (non-linear) Navier- 
Stokes equations are investigated, it is found that the linearization procedure is 
certainly valid for regions at  the edge of the boundary layer. As points closer to 
the axis within the boundary layer are considered, the non-linear terms become 
more important. However, it is unusual to note that when linear and non-linear 
terms are of equal importance, the leading term in the solution of the differential 
equation is just that found from the linear Navier-Stokes equations; the higher 
terms do differ though. This fact considerably extends the validity of the linear 
solution. 
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It is of some interest to consider the effect of the non-linear terms in the 
boundary-layer equations. In  the work of Stewartson (1951) it was the influence 
of these terms that allowed the discontinuity from the linearized equations to be 
smoothed out by the essential singularity. In $6, a summary is given of argu- 
ments which indicate that in the trailing edge situation the discontinuity is not 
removed by the non-linear terms. There is no essential singularity at  7 = 1; in 
fact the dominant term of the solution of the linear boundary-layer equations 
near T = 1 is also the dominant term from the non-linear equations. The physical 
explanation offered is as follows: in the flow past the leading edge the effect of the 
edge is convected downstream at a velocity less than that of the uniform stream. 
A t  the edge of the boundary layer this difference is certainly very small, but it is 
non-zero. The presence of the plate instantaneously retards the flow at all points 
downstream of the leading edge at the initial time. In  contrast, the vorticity 
downstream from the trailing edge is zero a t  the initial time, and the effect of the 
edge is convected at  exactly the free-stream velocity. Initially the vorticity is 
discontinuous along the line x = 0, and so this line of discontinuity moves down- 
stream with the constant velocity U when the effect of diffusion parallel to the 
plate is neglected. That is, the discontinuity is preserved at  the value 7 = 1, and 
it can only be removed through considering the Navier -Stokes equations. 

Finally, we consider the limitations of the model of a semi-idmite flat plate to 
describe realistic flows. 

2. Statement of the problem 
We consider the problem as one with a constant velocity U impulsively set up 

in the main stream at time t = 0,  while the plate remains at rest. The motion is 
two dimensional, so we take the origin of the co-ordinate system as the trailing 
edge of the flat plate which otherwise occupies the negative part of the x axis. 
If u and v are the components of velocity parallel to the x and y axes respectively, 
then the Navier-Stokes equations are 

UxfVy = 0, (2.1) 

(2.2) 

(2.3) 

Ut + uu, + 27UY = - p-ipz + VV%, 

vt + uv, + vvy = - p-lpy + vv2v ; 

p(x ,  y, t )  is the pressure and p, Y are the constants representing the density and 
kinematic viscosity of the fluid. 

When a stream function @(x, y, t )  is defined by u = $y, v = - II., the equation of 
continuity (2.1) is immediately satisfied. The pressure p can then be eliminated 
from the momentum equations (2.2), (2.3) for 

when w = V2$; this is the Helmholtz equation for the vorticity w(x ,  y, t ) .  Because 
of a symmetry about the x axis, the solution of these equations is considered for 
y > 0 only. 
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The boundary and initial conditions can be stated as follows: 

u = v = 0 when y = 0, x < 0,  t 3 0 ;  ( 2 . 5 ~ )  

uy = v = 0 when y = 0, x > 0, t 3 0 ;  ( 2 . 5 b )  

u =  U ,  v =  0 when y > 0, x > 0, t = 0 ;  ( 2 . 5 ~ )  

u z U ,  v 2: 0 when y-tm, t 3 0; ( 2 . 5 d )  

uz U ,  V E  0 when x++co, t 3 0. ( 2 . 5 e )  

The final condition to be stated is that for x -+ - 00. Here there is no knowledge of 
the trailing edge so that the velocities are those for the flow past an infinite plate. 
That is, 

v - 0  as X - f - - 0 0 ,  t > 0 ,  (2 .5f )  

where 

this was given by Rayleigh (1911). The only other point noted here is that, 
eventually, the velocities tend to zero throughout the  flow field. However, the 
manner of this decay does not interest us; it is the somewhat artificial result of 
taking a semi-infinite plate rather than one of finite length. 

The conditions to be satisfied have been stated for the set of equations (2.1)- 
(2.3); it is a straightforward matter to adjust these for the equation (2.4). 

3. A boundary-layer solution 
It is the assumption of the Prandtl boundary-layer theory for the unsteady 

flow past a flat plate that the motion is represented by a balance between con- 
vection parallel to, and diffusion normal to, the axis of the plate; the pressure 
gradient is zero, This leads to the equations (cf. Rosenhead 1963), 

U , f V y  = 0, (3.1) 
Ut+UU,+vU?, = vuyy, (3.2) 

from ( 2 .  l), (2.2). In this approximation we neglect the action of diffusion parallel 
to the plate; convection alone acts in the positive II: direction, so that ( 2 . 5 f )  must 
represent the velocities for all x < 0. In  the remainder of this section we consider 
x 3 0 alone, and set the condition 

v = O  when .% = 0. y > 0  (3.3) 

to replace ( 2 . 5 a , f ) ;  (2.5b-e) remain. These non-linear boundary-layer equations 
cannot, of course, be solved completely; further assumptions need now be made to 
gain the information required. 

Here our interest centres on the development of the wake downstream from the 
trailing edge. To begin, therefore, we consider the situation when the motion 
differs only slightly from the basic flow of a uniform stream; that is, we neglect 
the products of v and u-U in the boundary-layer equation (3.2) to give the linear 

~~ 

differential equation 
,u,+ uuz = vuyv (x,y,t 2 0) .  (3.4) 
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The solution of this equation, together with the conditions (2.5b-e), (3.3), is 
considered in an attempt to describe the flow at a time soon after the disturbance 
due to the plate reaches the point P(x, y) in the wake region, particularly for P at 
the edge of the boundary layer. The neglect of the non-linear terms certainly does 
raise important points; however, we delay a full discussion until a later section. 
The equation (3.4) is equivalent to that derived by Stewartson (1951); a similar 
method of solution to the one he used is adopted here. 

We define 
(3.5) 

and from dimensional arguments it is clear that u is a function of < and 7 only. 
Consequently, u(<, 7 )  satisfies 

ucc+g&+7(r- l)u,  = 0 (3.6) 

subject to the conditions uc = 0 on [ = 0; u --f U as both ~ + 0 0  and 7 -+ 0 ;  
u N U erf &’ as r -+ 00, $; 0. A solution is sought in the form of a Fourier cosine 
transform, defining 

U(a, 7 )  = u(<, 7 )  cos a<dC. 
/om 

With (uJS=,, = 0, the transform of (3.6) becomes the first-order partial dif- 
ferential equation 

which has the solution 
4aua - r(7 - 1 )U, + (a2 + &)?I = 0, 

where G is an arbitrary function. That is, 

when the constant for the inverse transform is absorbed into G. From the con- 
dition 7 + co we find 

IOm a-1 e-a2 ~ ( a 2 )  cos [a da = u erf+C. 

Taking the inverse transform (Erdelyi et aZ. 1954, p. 73), 

a-l e-a2 G (+a2) = U6(a)  - 47r-t Ue-a’ @(&; 3; a2), 

where @(a; c ;  z )  is the Humbert notation for the confluent hypergeometric 
function (Erdelyi et al. 1953, p. 248) and &(a) is the Dirac delta function. The 
other conditions are already satisfied unless r --f 0 and < + 00 simultaneously 
such that rC2 is constant. In this case we require 

a-lG( -a2) = U6(a). 

Therefore, if r < 1, the solution is u = U ,  though for 7 2 1 we have, after some 
simplification, 
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more generally, we can expand the integral of (3.7) into the infinite series 

when the (2n) superscript represents the 2nth derivative. 
These results can be interpreted immediately: the velocity u(x,  y, t )  is constant 

at the point P(x,  y)  until a time t = x /U  has elapsed. Accordingly, there is a 
finite time within which the flow in the wake is unaware of the presence of the 
plate because the disturbance due to the trailing edge is transmitted through the 
liquid by convection at  the mainstream velocity. At 7 = 1 , the velocity u, and all 
its derivatives with respect to y are continuous. However, uz is discontinuous 
and so, from the equation of continuity, v is also discontinuous. This conclusion 
is physically unrealistic, and can be taken to be anatural consequence of neglecting 
the derivatives with respect to x in the boundary-layer approximation. Alterna- 
tively, it can be argued that the discontinuity present in the solution of the linear 
equation is removed when the non-linear terms are included, and that the real 
flow is more accurately described in this way. Stewartson (1951) followed the 
second line of reasoning when he considered the flow past the leading edge. These 
two possibilities are closely investigated in the following sections. 

According to the linear boundary-layer approximation, the vorticity w is 
given by ul/. From (3.9) this then indicates w = 0 for 7 < 1, and 

for7 2 1. 
After the work described in this paper had been completed, it was found 

possible to sum this series. The terms in (3.11) can be rearranged to give an 
infinite series with terms in (7 - 1) rather than (7 - 1 ) / ~ .  The resulting expression 

which is the series expansion for the function 

(3.12) 

This rearrangement is a purely formal procedure; however, it  is now easily seen 
that (3.12) does in fact satisfy both the differential equation and boundary con- 
ditions required, and so represents the solution for the problem. Corresponding to 
(3.12) we can gain 

u = ~ - ~ / ~ e - t ~ ~ e r f ~ ~ ) c i p  nt  (7 2 11, 

When the asymptotic expansion is taken for (3.12), we have 
from (3.10). 

w E U(nr~t)-t{e-~%2- 2 ( 7 r & - + e - ~ ~ 2 r }  for 7 -too, 6 = O(1). 

The second term is essentially the correction due to the disturbance of the 
trailing edge at  the edge of the boundary layer for large times t ;  the variable 
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C2r = Uy2/vz is time independent. It is seen, therefore, that the disturbance is 
carried away by convection, and particularly that it is concentrated near t: small, 
i.e. closer to the axis. It is indeed interesting to observe the role of convection 
here in transmitting the effect of the trailing edge within the boundary layer 
itself, and the author is grateful to a referee for bringing this point to his attention. 

4. A solution in the neighbourhood of r = 1 
It is convenient to consider the Navier-Stokes equations in the form (2.4). 

Again we begin by considering the flow when it differs slightly from that of a 
uniform stream, so that it is possible to write @ = Uy in the Jacobian of (2.4) to 

(4.1) 
give 

These circumstances are the same as those under which (3.4) was considered in 
the previous section; now, however, the wzz term is included to represent dif- 
fusion parallel to the z axis. 

Together with the non-dimensional variables 5 and T (given in (3.5)), we 
further define 

Wt + u w ,  = vv2w. 

2 q = -  

When the function H ( C , q , r )  is introduced by w = U(vt)-$H, it is seen that H 
satisfies the linear partial differential equation 

(vt)4 

H,,++CH,++H+r(r-  1)H, = T ~ H , - ~ ~ H , - H , , - ~ T ~ - ~ H , - T ~ ~ - ~ H , ,  (4.2) 

from (4.1). When 7 +co, and a/aq = 0, the right-hand side of (4.2) is zero, so that 
the resultant equation for the vorticity in terms of H as a function of C and T is 
equivalent to the boundary-layer equation (3.6) for the velocity w([, 7). After 
setting appropriate conditions the solution would then be given by (3.11). 

Generally, it is known that the singular points of a differential equation occur 
where the coefficient of a highest order derivative is equal to zero. Now when q is 
infinite and T = 1, the coefficients of both the H,, and H, terms in (4.2) are zero. 
In  the region under consideration it is necessary that the coefficients of these 
terms are of finite order, together with the coefficients of the other highest 
derivatives. Physically, this ensures that the processes of diffusion (in both 
directions) and convection are in balance. 

We therefore introduce the transformation 

(T = (7-1)q  
to replace r ;  (4.2) then becomes 

(4.3) 

H g  + + &H - (r + r ) H ,  + QgH, + 2 7 - ' ( ~  + q)H, 

+&qH,+ 2(~q-~H, ,+H, ,+q-~(( (~+l j )~+~~~)H, ,  = 0. (4.4) 

When q $ 1 and 17- 11 < 1 such that (T = O(l ) ,  the coefficients of H,, and H, 
are both O(1). The transformation (4.3) is a stretching transformation in the 
terminology of singular perturbation problems. 
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The boundary conditions are now set in terms of 5 and 0. because a solution is 
sought for (4.4) for large 7. At < = 0 we require H = 0, since the vorticity is zero 
ony = 0, x > 0, cf. ( 2 . 5 b ) .  Further, H --f 0 as <+a and also as 0 . 3  -a. Finally 
we match H onto the dominant term 

of (3.10) as 0. -+ +a. 
i .r-1(~ - 1 )3ge-tC2 (4.5) 

For the first step in the solution it is possible for us to write 

H = Se-icz M ( u ,  7) (4.6) 

for some function M ;  in this way the conditions for 5 can be satisfied as well as 
(4.5). The corresponding differential equation for M becomes 

(1 + 2 a p +  20.27-2) Mu, + M,, 3- 2u7-1Mu, 

+ (ku + 27-1 + 20-7-2) M u  - (0- + $7) lM, + $M = 0, 

the solution of which must match with 7r-l a4 7-4 from (4.5). Therefore we write 
M = r]drn(a), and then note, on retaining only the dominant terms for large 7, 

(4.7) 
that 

where dashes denote differentiation with respect to a. The general solution of this 
ordinary differential equation is 

(4.8) 

where A and B are constants (possibly complex). As a function of the complex 
variable z, @ ( a ; c ; z )  is defined in the z plane cut along the negative real axis; 
hence m(u)  has different representations for u > 0 and CT < 0 while still retaining 
continuous derivatives of all orders at g = 0. We require m to have an exponential 
decay as u + - co, and m N r1u4  as u -+ + co; the asymptotic expansions for 
@ (Erdelyi et al. 1953, p. 278) show 

m‘’ + -1gm‘ - l m  = 0 
2 4 

m(u) = A@( - $; +; - i@) +B( - &T”kD($; 8; - p), 

A = 2-hn-3 r(2) a,nd B = - i(27r-8 r(g). (4.91 

We note, in particular, that the values (4.9) imply 

m N 2-kn-1( - g)4 e - P  as (r‘ --f -a. (4.10) 

Collecting these results together, we can finally write 

for u 5 0 as the vorticity when 7 > 1, 17- 11 
The result (4.11) clearly indicates a process whereby the effect of the plate is 

initially, though only slightly noticed at  a point in the wake through the process 
of diffusion; its effect is then rapidly increased when T N 1 as convection comes 
to dominate the motion. As T increases in value, the boundary-layer solution 
(3.11) will give an accurate representation for the velocity with an error of the 
order of e--f’12 as long as the assumptions u-U, v < U are valid. This will certainly 
be true at  the edge of the boundary layer, though at points well within this layer 
the full non-linearity of the differential equations will have to be faced. 

1.  
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We just note here that the matching can be continued for higher terms. When 
we write H = (5e-*52)(2n) 7-(n+4)m,(a), and substitute into (4.4), the dominant 
terms for 7 9 1 lead to an ordinary differential equation for m,(a) with solution 

m n = A n @( - $ - 4n; Q; - i c 2 )  + B,( - &a2)& @($-in; 8; - &a2) 

for constants A ,  and B,; this generalizes (4.8). The constants are calculated on 
satisfying the conditions m, + 0 when a 3 - 00; m, is proportional to en+) 
when c 3 + 00. The details are not completed here. 

The main question to consider at  this juncture in the work is the validity of the 
linearization procedure that resulted in (4.1). With this end in view, the complete 
Navier-Stokes equations are considered in terms of the independent variables [, 
7, a. The function F(c ,q ,  c) is defined from the stream function + by 

this isolates the part due to the uniform stream. The vorticity equation (2.4) is 
then 

HCg + aCHC + 4H + H,,, - &7H, - aH, + 207-lH,, + (1 + 20-7-l+ 2 ~ ~ 7 - ~ ) H , ,  

+ $TH, + 2(7-l+ ~ V - ~ ) H ,  = (0. + 7){(FuHg - FgH,) + (FCH. - F7HS)}, (4.12) 

where 

H = 3'55 + F,, + 2a7-'FU,, + 2(7-l+ aq-') Fv + (1  + 2 ~ 7 - l +  2 ~ ~ 7 - ~ )  F,,. (4.13) 

From the linear analysis we have found that 

H - q-4(e-"2m(c) for [ $  1,  7 9 1,  u = O(1); (4.14) 

consequently, 

j?' - 47-45-1e-t5'm(a) for 6 9 1, 7 1 ,  u = O(1). (4.15) 

When these asymptotic representations are substituted into (4.12), it is observed 
that the linear terms are of the order 7-*53e-4527 whereas the non-linear terms are 
of the order ge-aC'. Therefore the neglect of the non-linear terms on the right-hand 

[ Z e P  9 $. (4.16) 
side is justified when 

Thevariableu = (7- l)qisfinite,sothatq - + m a s r - + l ;  (4.16)showsthatcneed 
tend to infinity no quicker than (2 log ,)a as r -+ 1. This indicates that there does 
exist a region downstream from the origin at  the edge of the boundary layer 
where the linearized Navier-Stokes equations are sufficient to describe the real 
flow as r + 1. At points further into the boundary layer the non-linear terms 
must be taken into account. 

We now introduce new independent variables 

4 = 7-154et5z and x = 7-15 

to replace 5 and q.  The variable + is taken to be O( l), which requires x < 1 when 
5 is large; we maintain a = 0 ( 1 )  as before. The asymptotic condition (4.15) 
becomes F 

F = xf(97 4, (4.17) 

4x+-*rn(u) as I$  + co; this enables us to write 
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which is substituted into the equations (4.12), (4.13). It is expected that (4.17) 
represents the leading term for x small in the expression for the stream function 
within the required region. When the dominant terms only are retained, the 
resultant partial differential equation for f is 

W$$$ + S4f$$ + Z.f$ + q5f$f$u - q5fJ$$ -fJ$ = 0; (4.18) 

the ratio of terms neglected to those retained is O(c-2). The boundary conditions 
to be posed are f 44-1. m(u) as q5 -+ 03, f 47r-14-9 at as u + m and 

f N 2b7-14-q - u ) - % e - & U . "  as u-+ -03. 

A solution that satisfies (4.18) and all these conditions is in fact 

f = 44-&m(u). (4.19) 

That is, the solution of the linear part of the differential equation also satisfies the 
non-linear part when equated to zero. This could, of course, have been noted 
immediately from observing that the dominant terms gained from substituting 
(4.15) into (4.12) do cancel. Nevertheless, the formal analysis pursued above is 
necessary for later observations. 

The function (4.19) is a solution of (4,18), but because insufficient boundary 
conditions have been imposed we cannot be certain yet that it is the unique 
solution. No condition has been stated at q5 = 0 on the boundary of the domain 
- 03 < CT < 03, cr 2 0. Uniqueness can be investigated by taking (4.19) to be the 
first term in an asymptotic series for q5 large of the exact solution of (4.18). We 
write f = 44-*m(u) + fl(q5, u), where fll  < 9-4 for q5 9 1, and fl does not upset 
the conditions as u + & co. When the quadratic terms in fl are rejected, the 
resultant linear differential equation is seen to be 

(4%$$$ + fq5fl$$ + #fl$) 
- (4$Qmy1$4+ 2q5-imf1++ 64-h'f1++$-3mflU) = 0. (4.20) 

The terms in the first bracket dominate for q5 9 1, and when the other terms are 
neglected the differential equation can be formally integrated for 

f1= A(c)q5-4 + B(u) log q5 + C(U),  

where A ,  B, G are arbitrary functions. To satisfy the condition I f l l  < $-$for q5 $- 1 
it is clear that the functions A ,  B and C are all identically zero. 

The only other way in which a solution with continuous derivatives of all 
orders can arise from a linear equation such a5 (4.20) is through the presence of an 
essential singularity at  some value q5 = q50 > 0. Now essential singularities are 
only anticipated for values q50 which give a zero coefficient for the highest order 
derivative with respect to q5; it is immediately observed that there are no positive 
values q5,, with this property in the present case. These arguments show that 
(4.19) is, in fact, the unique solution for all q5, u in the given domain. The range of 
validity of the solutions (4.14), (4.15) is thereby increased; nevertheless the 
formulation of (4.18) involved neglecting terms that were O(c-2), so it is still not 
possible to take g = O( 1). 
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We now consider the higher order terms. The approximation (4.17) is known to 
incur an error that is O(c-2). Now c3efCa = $x-l and so for small x we can write 
[-2 = - (2  log x)-l; the first two terms in the expansion for F are then given by 

F = 4 ~ $ - 4 m ( ~ )  +x(logX)-lf*($, (T) 

for some functionf". The dominant terms gained when this is substituted into 
(4.12), (4.13) provide the linear differential equation 

$ ~ ~ $ C ~ + ~ ~ $ ~ ~ , * , ~ + ~ ~ $ ~ ~ $ +  Wf$ - $ - w 4 $ Y & $ +  12Qf&+ 3 f 3  

- $4-8 m(4#y&,,+ 4Qf&-f,*) = 4#-'(m'm''- mm"'). (4.21) 

No general solution of (4.21) seems to be possible, though we can note that there 
exists the solutionf* = A (a)$-&, for all functions A ,  of the homogeneous differen- 
tial equation. Particular solutions of the inhomogeneous equation for $ large and 
$ small are respectively 

f* = 8$"(m'm'' - mm'") and f* = 244log $m-l(mm" - W L ' ~ ) ;  

both are small in comparison with $4 in their separate domains. Consequently, 
the corrective effects for the dominant term (4.19) from the non-linear part of the 
differential equation do not enter the resultant expression for F until higher 
orders than the second. The details are not considered any further here. 

5. Discussion 
In  $ 3 the boundary-layer equations are linearized to give an understanding of 

the flow at the edge of the boundary layer; we now briefly consider the role of the 
non-linear terms in these equations in the neighbourhood of r = 1. Because the 
analysis is very long, in some places following closely that already given in $4, 
the conclusions are just summarized here. 

When the stream function $(s,y,t) is written as 4 = U(vt)4{c+F(f;,7)},  F 
satisfies the differential equation 

FCCC+ $[FCC+7(7- 1)FC,+72(F5FC,-F,F~C) = 0. (5.1) 

F N 4n-l(7- 1)4c-;-le-tC* for 0 < 7- 1 < 1, c - t o ~ .  (5.2) 

It is already known that P = 0 for 0 < 7 < 1, while linear theory states that 

Now the linearization of (5.1) is invalid when 5 = (7- l)I;"eP is positive and 
O( l), which gives a non-uniform region as 7 -f 1 + when 5 % 1 ; however, when 
(5.2) is substituted into (5. l ) ,  it  is seen that the dominant terms cancel. This leads 
us to conjecture that (5.2) represents the leading term in the solution to the non- 
linear boundary-layer equations as 6 -+ 0 + . The conjecture is justified when it is 
proved (i) that (5.2) is the unique solution to (5.1) for 5 = O(1) with the correct 
behaviour as 5 -+a, and (ii) that there is no further region of non-uniformity 
within which 5 = O( 1). (An infinite number of solutions to (5.1) with an essential 
singularity at  r = 1 do exist, but all have a rapidly oscillating part that is 
physically unrealistic and must be rejected.) These conclusions imply that the 
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discontinuity in the velocity perpendicular to the axis of the plate is a natural 
consequence of the boundary-layer assumption. 

To conclude, we can state the error involved in the calculations of the pre- 
ceeding sections when the plate is real with a finite length 1. 

The point P(x, y) is taken to be in the wake with x > 0; the origin represents the 
trailing edge and the point ( - I, 0) the leading edge. Any influence of the leading 
edge will be transported by convection to the point P after the time (1 +x)/U; at 
this time the solution will completely break down. However, there is the physical 
effect of diffusion parallel to the plate; this transmits the effect of the leading 
edge to P instantaneously. From (4.10) we can see that, for times less than 
(1 +x)/U, the error involved in ignoring the existence of the leading edge is 
exponentially small as 

exp { - (-!A2) 
4vt ’ 

which it is reasonable to neglect. 

The author wishes to thank the National Research Council of Canada for an 
operating grant during the time this work was completed. 
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